The West African Examination Council (WAEC) Further Mathematics Senior School Certificate Examination (SSCE) paper will take place on Wednesday, 9th April, 2018.
The 2018 WAEC Further Mathematics exam will comprise of Papers 2 & 1 Essay and Objective which will commence from 8.30am and end by 14.30am. That means the examination will last for three hours (3hrs) only.
In this post, we will be posting out samples of the WAEC Further Mathematics questions for candidates that will participate in the examination for practice purposes.
WAEC Further Mathematics Answers.
1CBBDCAADCB
11DCBDCBCDCC
21ABDCDABBCB
31CDCADBCAAD
11DCBDCBCDCC
21ABDCDABBCB
31CDCADBCAAD
=========================
12)
P:F=4:1 =4x+1x=100
5x=100
x=100/5
x=20
pass=20*4=80%
fail= 20*1=20%
p(pass)=80/100=0.8
p(fail)=20/100=0.2
n=7
12ai)
P(at least 3passed)
P=0.8
Q=0.2
P(x=r)=n(rP^rq^n-r
P(x>/3)=1-P(x<2) P(x<2)=P(x=0)+P(x=1)+P(x=2) P(x=0)=7dgree (0.8)degree (0.2)^7 P(x=0)=0.0000128 P(x=1)=^7( (0.8)^1 (0.2)^6 =0.0003584 P(x<2)=7^C2 (0.8)^2 (0.2)^5 =0.0043008 P(X<2)=0.0000128+0.0003584+0.004300 =0.004672 P(x>3)=1-0.004672
=0.995321
=0.10(2d.p)
12aii)
P(between 3 and 6 failed)
P=0.2
q=0.8
P(36)
P(x=3) + P (x=4)+p(x=5)+P(x=6)
p(x=3) 7^C3 (0.2)^3 (0.8)^4
=0.114688
p(x=4)=7^C4 (0.2)^4 (0.8)^3
0.028672
P(x=5)=7^C5 (0.2)^5 (0.8)^2
=0.0043008
P(x=6)=7^C6 (0.2)^6 (0.8)^1
=0.0003584
p(36)
=0.114688+0.028672+0.0043008
+0.0003584
=0.1480192
=0.15(2d.p)
==================
P:F=4:1 =4x+1x=100
5x=100
x=100/5
x=20
pass=20*4=80%
fail= 20*1=20%
p(pass)=80/100=0.8
p(fail)=20/100=0.2
n=7
12ai)
P(at least 3passed)
P=0.8
Q=0.2
P(x=r)=n(rP^rq^n-r
P(x>/3)=1-P(x<2) P(x<2)=P(x=0)+P(x=1)+P(x=2) P(x=0)=7dgree (0.8)degree (0.2)^7 P(x=0)=0.0000128 P(x=1)=^7( (0.8)^1 (0.2)^6 =0.0003584 P(x<2)=7^C2 (0.8)^2 (0.2)^5 =0.0043008 P(X<2)=0.0000128+0.0003584+0.004300 =0.004672 P(x>3)=1-0.004672
=0.995321
=0.10(2d.p)
12aii)
P(between 3 and 6 failed)
P=0.2
q=0.8
P(36)
P(x=3) + P (x=4)+p(x=5)+P(x=6)
p(x=3) 7^C3 (0.2)^3 (0.8)^4
=0.114688
p(x=4)=7^C4 (0.2)^4 (0.8)^3
0.028672
P(x=5)=7^C5 (0.2)^5 (0.8)^2
=0.0043008
P(x=6)=7^C6 (0.2)^6 (0.8)^1
=0.0003584
p(36)
=0.114688+0.028672+0.0043008
+0.0003584
=0.1480192
=0.15(2d.p)
==================
4)
(x^2+5x+1)sqroot(2x^3+mx^2+nx+11)=(2x-5)
remainder:30x+16
(x^2+5x+1)(2x-5)
=2x^3+10x^2+2x-5x^2-25x-5
=2x^3+10x^2-5x^2-25x-5
=2x^3+5x^2-23x+30x+16-5
=2x^3+5x^2+7x+11
Therefore m=5, n=7
=================
(x^2+5x+1)sqroot(2x^3+mx^2+nx+11)=(2x-5)
remainder:30x+16
(x^2+5x+1)(2x-5)
=2x^3+10x^2+2x-5x^2-25x-5
=2x^3+10x^2-5x^2-25x-5
=2x^3+5x^2-23x+30x+16-5
=2x^3+5x^2+7x+11
Therefore m=5, n=7
=================
5a)
pr(age)=4/5
pr(fully)=3/4
pr(must)=2/3
pr(age not admitted)=1-4/5
=1/5
pr(fully not admitted)=1-3/4
=1/4
pr(must not admitted)=1-2/3
=1/3
Therefore pr(none admitted)=1/5*1/4*1/3
=1/60
5b)
pr(only age and fully gained admission)=4/5*3/4*1/3
=1/5
================
pr(age)=4/5
pr(fully)=3/4
pr(must)=2/3
pr(age not admitted)=1-4/5
=1/5
pr(fully not admitted)=1-3/4
=1/4
pr(must not admitted)=1-2/3
=1/3
Therefore pr(none admitted)=1/5*1/4*1/3
=1/60
5b)
pr(only age and fully gained admission)=4/5*3/4*1/3
=1/5
================
12a)
tabulate
Marks| 1-10, 11-20, 21-30, 31-40, 41-50,51-60, 61-70, 71-80, 81-90, 91-100
F| 3, 17, 41, 85, 97, 115, 101, 64, 21, 6
C.B| 0.5-105, 10.5-205, 20.5-305, 30.5-405,40.5-505, 50.5-605, 60.5-705, 70.5-805,80.5-905, 90.5-1005
C.F| 0+3=3, 3+17=20, 20+41=61, 61+85=146,146+77=243, 243+115=358, 358+101=459,459+64=523, 523+21=544, 544+6=550
=================
tabulate
Marks| 1-10, 11-20, 21-30, 31-40, 41-50,51-60, 61-70, 71-80, 81-90, 91-100
F| 3, 17, 41, 85, 97, 115, 101, 64, 21, 6
C.B| 0.5-105, 10.5-205, 20.5-305, 30.5-405,40.5-505, 50.5-605, 60.5-705, 70.5-805,80.5-905, 90.5-1005
C.F| 0+3=3, 3+17=20, 20+41=61, 61+85=146,146+77=243, 243+115=358, 358+101=459,459+64=523, 523+21=544, 544+6=550
=================
11a)
Given:
f(x)={(4x-x^2)dx
f(x)=2x^2 – x^3/3 + K
f(3)=2(3)^2 – (3)^2/3 + K =21
18 – 9 + K=11
9+K=21
K=21-9
K=12
Therefore
f(x)= -x^3 + 2x^2 + 12
11b)
i) Tn=a+(n-1)d
T2=a+(2-1)d
T2=a+d
T4=a+3d
T8=a+7d
GP
Tn=ar^n-1
T1=ar^1-1
T2=ar^2-1=ar
T3=ar^2
a+d=a …..equation (1)
a+3d=ar …..equation (2)
a+7d=ar^2 …..equation (3)
T3+T5=20
a+2d+a+4d=20
2a+6d=20
a+3d=10 …..equation (4)
…..equation (2)/…..equation (1)
ar/a=a+3d/a+d
r=a+3d/a+d
…..equation (3)/…..equation (2)
ar^2/ar=a+7d/a+3d
r=a+7d/a+3d
but r=r
a+3d/a+d=a+7d/a+3d
(a+3d)^2=(a+d)(a+7d)
a^2+6ad+ad^2
a^2+7ad+ad+7d^2
a^2+8ad+7d^2
a^2+6ad+9d^2=a^2
+8ad+7d^2
6ad+9d^2=8ad+7d^2
6ad-8ad=7d^2-9d^2
-2ad=2d^2
ad=dd
a=d
===================
Given:
f(x)={(4x-x^2)dx
f(x)=2x^2 – x^3/3 + K
f(3)=2(3)^2 – (3)^2/3 + K =21
18 – 9 + K=11
9+K=21
K=21-9
K=12
Therefore
f(x)= -x^3 + 2x^2 + 12
11b)
i) Tn=a+(n-1)d
T2=a+(2-1)d
T2=a+d
T4=a+3d
T8=a+7d
GP
Tn=ar^n-1
T1=ar^1-1
T2=ar^2-1=ar
T3=ar^2
a+d=a …..equation (1)
a+3d=ar …..equation (2)
a+7d=ar^2 …..equation (3)
T3+T5=20
a+2d+a+4d=20
2a+6d=20
a+3d=10 …..equation (4)
…..equation (2)/…..equation (1)
ar/a=a+3d/a+d
r=a+3d/a+d
…..equation (3)/…..equation (2)
ar^2/ar=a+7d/a+3d
r=a+7d/a+3d
but r=r
a+3d/a+d=a+7d/a+3d
(a+3d)^2=(a+d)(a+7d)
a^2+6ad+ad^2
a^2+7ad+ad+7d^2
a^2+8ad+7d^2
a^2+6ad+9d^2=a^2
+8ad+7d^2
6ad+9d^2=8ad+7d^2
6ad-8ad=7d^2-9d^2
-2ad=2d^2
ad=dd
a=d
===================
(9a)
1/1-cos tita + 1/1+cos tita
=1+cos tita + 1-cos tita//(1-cos tita) (1+cos tita)
= 2/1+cos tita – cos tita – cos^2 tita
= 2/1-cos^2 tita
Recall that :
Cos^2 tita + sin^2 tita = 1
.:. Cos^2 tita = 1-sin^2 tita
.:. 1/1-cos^2 tita + 1/1+cos tita
= 2/1-(1-sin^2 tita)
(9b)
At stationary points,
dy/dx=0.
y=x^0(x-3)
Let u=x^2,v=x-3.
du/dx=2x dv/dx=1.
dy/dx= Udv/dx + Vdu/dx
dy/dx=x^2(1)+(x-3)(2x)
.:. dy/dx=x^2+2x^2-6x
dy/dx=3x^2-6x
At stationary point,
dy/dx=0..
.:.3x^2-6x=0
Equation of line=> 3x^2-6x=0
==================
1/1-cos tita + 1/1+cos tita
=1+cos tita + 1-cos tita//(1-cos tita) (1+cos tita)
= 2/1+cos tita – cos tita – cos^2 tita
= 2/1-cos^2 tita
Recall that :
Cos^2 tita + sin^2 tita = 1
.:. Cos^2 tita = 1-sin^2 tita
.:. 1/1-cos^2 tita + 1/1+cos tita
= 2/1-(1-sin^2 tita)
(9b)
At stationary points,
dy/dx=0.
y=x^0(x-3)
Let u=x^2,v=x-3.
du/dx=2x dv/dx=1.
dy/dx= Udv/dx + Vdu/dx
dy/dx=x^2(1)+(x-3)(2x)
.:. dy/dx=x^2+2x^2-6x
dy/dx=3x^2-6x
At stationary point,
dy/dx=0..
.:.3x^2-6x=0
Equation of line=> 3x^2-6x=0
==================
14ai)
SKETCH THE DIAGRAM
14aii)
Using lami’s theory
T1/sin60=T2/sin30
48N/sin60=T2/sin30
48N/0.8660=T2/0.5
0.5(48)/0.8660=T2(0.8660)/0.8660
T2=24/0.8660
T2=27.7N
14b)
Using the equation of motion
H=U^2/2g
H=(20)^2/2*10
=20*20/20
H=20m
Timetaken to reach the maximum height
S=Ut+1/2at^2
20=0+1/2(100)t^2
20/5=5t^2/5
t^2=4
t=sqroot4
t=2S
================
SKETCH THE DIAGRAM
14aii)
Using lami’s theory
T1/sin60=T2/sin30
48N/sin60=T2/sin30
48N/0.8660=T2/0.5
0.5(48)/0.8660=T2(0.8660)/0.8660
T2=24/0.8660
T2=27.7N
14b)
Using the equation of motion
H=U^2/2g
H=(20)^2/2*10
=20*20/20
H=20m
Timetaken to reach the maximum height
S=Ut+1/2at^2
20=0+1/2(100)t^2
20/5=5t^2/5
t^2=4
t=sqroot4
t=2S
================
10a)
i) (x^2-1) (x+2)=0
(x-1) (x+1) (x+2)
x=1, or -1 or -2
ii) 2x-3/(x-1)(x+1)(+2)
=A/x-1+B/x+1+C/x+2
2x-3=A(x+1)(x+2)+B(x-1)(x+2)
+C(x-1)(x+1)
let x+1=0,x=-1
2(-1)-3=B(-1-1)(-1+2)
-5/2=-2B/-2 B=5/2
let x-1 =0 x=1
2(1)-3=A(1+1)(1+2)
-1=CA, A=-1/6
Let x+2=0 x=-2
2(-2)-3=C(-2-1)(-2+1)
-7=3C, C=-7/3
10b)
X1 Y2
(3, 1)
r=sqr(x2-x1)^2+(y2-y1)^2
r=sqr(3+3)^2+(1-1)^2
r=sqr6^2+0=sqr36=6
the equatuon of a circle
(x-a)^2+(y-b)^2=r^2
(x-(-3))^2+(y-1)^2=6^2
(x+3)^2+(y-1)^2=36
x^2+6x*9+y^2-2y+1=36
x^2+y^2+6x-2y+9+1-36=0
x^2+y^2+6x-2y-26=0
===================
i) (x^2-1) (x+2)=0
(x-1) (x+1) (x+2)
x=1, or -1 or -2
ii) 2x-3/(x-1)(x+1)(+2)
=A/x-1+B/x+1+C/x+2
2x-3=A(x+1)(x+2)+B(x-1)(x+2)
+C(x-1)(x+1)
let x+1=0,x=-1
2(-1)-3=B(-1-1)(-1+2)
-5/2=-2B/-2 B=5/2
let x-1 =0 x=1
2(1)-3=A(1+1)(1+2)
-1=CA, A=-1/6
Let x+2=0 x=-2
2(-2)-3=C(-2-1)(-2+1)
-7=3C, C=-7/3
10b)
X1 Y2
(3, 1)
r=sqr(x2-x1)^2+(y2-y1)^2
r=sqr(3+3)^2+(1-1)^2
r=sqr6^2+0=sqr36=6
the equatuon of a circle
(x-a)^2+(y-b)^2=r^2
(x-(-3))^2+(y-1)^2=6^2
(x+3)^2+(y-1)^2=36
x^2+6x*9+y^2-2y+1=36
x^2+y^2+6x-2y+9+1-36=0
x^2+y^2+6x-2y-26=0
===================
1a)
g(x)=y
y=x+6
x=y-6
g^- f(x-6)
=4-5(x-6)/2=4-5x+30/2
=34-5x/2
1b)
coodinate=(x1+x2/2 ,y1+y2/2)
=(7-2/2,7-5/2)=(5/2,2/2)
=(5/2,1)
g(x)=y
y=x+6
x=y-6
g^- f(x-6)
=4-5(x-6)/2=4-5x+30/2
=34-5x/2
1b)
coodinate=(x1+x2/2 ,y1+y2/2)
=(7-2/2,7-5/2)=(5/2,2/2)
=(5/2,1)
If you need us to help you with updated questions and answers at the right time about WAEC Further Mathematics Examination 2018, kindly provide us your phone number and email address in the comment box below. Also feel free to ask any question pertaining to this guide.
Social Plugin